Journal of Magnetic Resonantd9,204-217 (2001)

doi:10.1006/jmre.2001.2295, available onlaehttp://www.idealibrary.com o

@®
IDEAL

Determination of the Rotational Diffusion Tensor of Macromolecules
in Solution from NMR Relaxation Data with a Combination of Exact
and Approximate Methods—Application to the Determination
of Interdomain Orientation in Multidomain Proteins
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In this paper we present a method for determining the rotational
diffusion tensor from NMR relaxation data using a combination of
approximate and exact methods. The approximate method, which
is computationally less intensive, computes values of the principal
components of the diffusion tensor and estimates the Euler angles,
which relate the principal axis frame of the diffusion tensor to the
molecular frame. The approximate values of the principal compo-
nents are then used as starting points for an exact calculation by a
downhill simplex search for the principal components of the tensor
over a grid of the space of Euler angles relating the diffusion tensor
frame to the molecular frame. The search space of Euler angles is
restricted using the tensor orientations calculated using the approx-
imate method. The utility of this approach is demonstrated using
both simulated and experimental relaxation data. A quality factor
that determines the extent of the agreement between the measured
and predicted relaxation data is provided. This approach is then
used to estimate the relative orientation of SH3 and SH2 domains
in the SH(32) dual-domain construct of Abelson kinase complexed
with a consolidated ligand. © 2001 Academic Press

Key Words: relaxation; rotational diffusion tensor; singular value
decomposition; domain orientation.

INTRODUCTION

interdomain NOE information is scarce. The accurate determ
nation of the rotational diffusion tensor is also important since
it is essential to interpret correctly relaxation data in terms of
local dynamics on the fast (ps—ns) timescalge-(17).

The influence of the nonisotropic nature of the overall
tumbling on NMR relaxation in the solution state has beer
known since the work of Woessnet§). Early experimental
applications to macromolecules were by Tjanetaal. (1),
Broadhurset al.(19), and Bruschweilegt al.(2). In the work of
Tjandraet al,, hydrodynamic calculations were used in conjunc-
tion with relaxation measurements to characterize the rotation:
diffusion tensor in ubiquitin. Bruschweileast al. (2) showed
that, for a small degree of rotational anisotropy, the diffusion
tensor, in any arbitrary frame of reference, can be written ir
guadratic form, thus simplifying the analysis. This method was
applied to the determination of the diffusion tensor in ubiquitin
and ribonuclease-H by Lest al. (3). Other groups have used
the exact equations provided by Woessi@) o determine the
tensor in the axially symmetric casg, (L5-17, 20.

Blackledgeet al. (5) have shown that, in the presence of a
significant deviation from axial symmetry, fitting to an axially
symmetric model yields two nearly indistinguishable minima
corresponding to diffusion as an oblate or as a prolate ellipsoic

Over the past few years, attention has been focused on the-figg necessitates, in the case of significant anisotropy and d
termination of several orientation-dependent properties such asion from axial symmetry of the diffusion tensor, use of the

the rotational diffusion tensor from NMR relaxation meas“reéxactequations of Woessna8j for a fully anisotropic diffusion

ments (~7) and the molecular alignment tensor from residengor. This approach requires a search over a six-dimension

ual dipolar couplings&-10). These measurements that providg, 3 meter space corresponding to the three principal values

long-range orientational information often complement the lagke gitfusion tensor and the three Euler angles relating the prir

of long-range NOEs, and are now routinely included in structu[.ﬁ:pal axis frame to the molecular frame. This approach is ven

refinement protocolsld). Both methods mentioned above prog,mpytationally intensive and time-consuming. Alternative ap

vide approaches to the determination of interdomain OriematiBFbaches have recently been suggested which employ simulat
in weakly interacting multidomain systems, (12-14) where  5nnealing 21) or Bayesian statistic2@). The former approach

is completely general though the latter makes assumptions abc
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principal components for the diffusion tensor as well as to réhe contribution of the high-frequency components to be esti
strict the values of the Euler angles relating the principal axisated for Egs. [2a] and [2b] using Eg. [2c]. Subtracting these
frame of the diffusion tensor to the molecular frame. The vatontributions, we obtair2b, 26)

ues of the principal components obtained from the approximate

analysis are then used, in the second step, as starting input 0.921)\ 2 .

for a three-dimensional simplex search for the tensor valudd, = Ri — 7(@) HF = 3(c” + d°)J(wn) [3a]
combined with a three-dimensional search for the Euler angles '

which relate the principal axis frame of the diffusion tensor tg, 13/0.955\ 2 9 2 3

the molecular frame. The Euler angle search is performed 68 — ™2 7( 037) HF = (¢"+d%)| 2J(0) + 5‘](‘“”) ’

a three-dimensional grid comprising the angular subspace re-
stricted using the results from the approximate method. We also
determine a quality factor for the estimated diffusion tensor.

The quality factor provides a measure of the agreement betwaéiereHF = d*J(0.8701) = —(yn/5y1)(1 — NOB)Ry. Using

measured relaxation data and that calculated using the estim&@8- [32] and [3b], we define a quantjiywhich depends solely
diffusion tensor. on the ratio of the spectral densities at frequencies zeraand

This quantity, which is independent of local motion, structural
parameters such as NH bond length, and CSA values (to fir

[3b]

THEORY order), is given by (when the effects of exchange Rnare
absent)
Heteronuclear Relaxation
For a heteronucled®PN-'H system, thé®N relaxation rates, o= ‘_1( Ry ) _ J(on) [4]
Ri(1/T1), Rx(1/T,), and steady state heteronuclear NOE are 3\2R, - R; J(O) -
given by
In this paper, we will relate all derived quantities 49 so all
Ry = d%[J(wn — wn) + 6d(@h + on)] effects of local motion will be neglected in what follows.
y In the most general case of a rigid asymmetric top (no loca
+3(c” +d%)J(wn) [1a]  motion), the spectral density function at a frequeads given
P2 by (18)
R = E[‘](wH —wn) +6J(wn) + 6J(wn + wn)]
5
3 2 A D
+(c*+d?) [23(0) + EJ(a)N)} [1b] Jw)=¢ ; D2+ o2 [5]
d?(Z)[6J(wn + wn) — I(wn — wn)]
NOE=1+ (”N) [1c] where
Ry
. D1 = (4Dxx + Dyy + Dz2)
with d = —(uo/47)(yuyntV2rd,,), ¢ = ynBoAo/3, andAc
is the chemical shift anisotropy of th&N nucleus. Equation [1] D2 = (Dxx + 4Dyy + Dz7)
can be simplified using the reduced spectral density approach D3 = (Dxx + Dyy 4 4D, [6]
(23,29
D4 = 6Diso + 6 (DIZSO — DZ)
Ry = 7d2J(0.921wp) + 3(c? + d?) I (wn) [2a]
13d2 3 D5 = 6Diso —6 D-2 — D2
Re = ~—5—3(0.95501) + (* + dz)[ZJ(O) + EJ(a)N)} (Do~ B7)
- DyyDz; + DyxD;7)/3. Dxx, Dyy, and D,, are the principal
NOE= 1+ 5d (y_N)J(O'SmH) 2¢] components of the molecular rotational diffusion tensor
- R ) D (Dyx < Dyy < D). The coefficientsh; are given by
It is evident from Eq. [2c] that the steady-state NOE is depen- A= 3y§z§

dent on the high-frequency components of the spectral density 2.2
function as well af}; (which is available from relaxation mea-
surements). The assumption tHéb) «x w2 atw ~ wy allows Az = 3x3y3
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Ay = 711[3()(3 +yi+ zﬁ) —1] - 132[5)( (3xg‘ +6y22% — 1) Det is an apparent isotropic diffusion constant for a given NH
vector, and is given bP¢¢ = 1/153(0). Using Eq. [5],Des can

+38y(3y4 + 63z — 1) +6,(32] + 6ygxg — 1)] be expressed as
As = 3[3(xq + V4 + Z3) — 1] + 5[8x(3xg + 6y3Z5 — 1) 1
Deff = ——=————. [14]
+8y(3yg + 6x325 — 1) + 8,(32% + 6yix5 — 1)]. [7] 6>, A/Di

where s, (D — DO, D7 =x.y.2), and . Dt 2455 I Folawn fom ner he i vecor 1 ueston
Vd, Z4) denotes coordinates of the NH unit vectors in the prmcf 9 =xY.2p P

ensor,
pal axis frame of the diffusion tensor. The ( y4, z4) are related

to the molecular frame unit vectors by the transformation 2D?2
D= —— [15]

Xq X "™ Dji + Diso’
Yo | =R, B, v)| Y], 8]
Z4 z

where the transformation matrRR(«, 8, y) is given by

cos) cos(B) cosf’) — sin(@) sin(y)  sin(@) cos(B) cosf’) + cosg) sin(y) —sin(B) cosf’)
R(a, B, ) = | —cosg) cos) sin(y) — sin(x) cosf/) —sin(x) cos(B) sin(y) + cosg) cosf) sin(@B)sin() |, [9]
cosg) sin(8) sin(w) sin(B) cos@)

wherew, , andy are the Euler angles relating the principal axi/hereD2 andDis, have been defined above. For example, wher

frame of the diffusion tensor to the molecular frame. In the caggs NH vector points along the axis of the diffusion tensor,
of an axially symmetric diffusion tensor (symmetric top), We=q_ [15] transforms to

haveD,, = D; andDyx = Dyy = D, and Eq. [5] transforms

to X _ 2(Dxnyy + DxxDzz+ DnyZZ)_ [16]
23 _ APDM Dax of 4Dxx + Dyy + D2z
Jw)== Z [10]
5 — Dax
When the anisotropy in the diffusion tensor is small, we may
with express the principal elements in the following way,
D$* = (5D, + Dy)
Dxx =D
Dgx = (2D, +4Dy) [11]
D D(1+¢ 17
Dgx — 6DJ_ yy = ( l) [ ]

D;, = D(l + 82),

The coefficientsA™ are given by
wheree; andeg, are small, positive dimensionless quantities,

AR = 373(1 - Z3) with &1 < &,. Using Eq. [17] in Eq. [16] we have
ax _ 21 2\2
Ao = 4(l ) [12] X 3+ 2(e1 + €2) + €162
eft = 2D 5 [18]
ax 1 5 2 + (81 + 82)
) o For small anisotropy, we havg + ¢, <« 6 ande1e, ~ 0. Thus,
A simpler, alternative approach is to define an effective dif-
fusion constant for a given NH vector in the following way: X =D <1 Lot 52) _ Dyy+ Dz
2
Defi = — | —— [13] _ Is0 — Mxx

6V1i-p B 2
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The effective diffusion constant along a given axis is then gD,, — Dxy), f = (Dyy — Dxx)/(Dzz — Dxx) andz = —cosg@).
average of the principal values along the two orthogonal axéssing these in Eq. [24], we have
and we have
_ fai _f oo 2
3D Dy y= fsifg+(1- fsinfe)z [25]
=y [20]
with 0 < y < 1. Equation [25] has the same form as the normal-

wherei = x, y, z. Thus, theDi; can be considered to be theized frequency for a dipolar lineshape as outlined in Appendix

Components of a second-rank ten@represented bﬂ( 3) | of Slichter (29) ThUS, fO”OWing the same procedure as that
outlined by Slichter, one can derive an expression for the distri

3DiE — D bution functionl (y) as a function ofy. We will reproduce only
Q= - 5 [21] the final expression here; for details, the reader is referred t

Appendix | of Slichter:;

wherekE is the identity tensor.
For agiven NH vector, the effective diffusion constantcanbe | ) _ 4 [ f(l1- Y)} fory > f

expressed a{) T ANI=D L=y 26
— yd - f)
Deﬁ:Diso+§ZQiij [22] I(y)_m |:(]__y)fi| fory < f.
i

HereK is the elliptic integral of the first kind and is given by
with §; = (3ij —&j)/2(, j = X, Yy, z) andé;j is the Kronecker
delta symbol. This result is obtained from the fact that a second- x

. z dx

rank tensor can be decomposed into a scalar (rank 0) component, K(m) = / _
a pseudo-vector component (rank 1), and a symmetric tensor of 0 v1-—msirx
rank 2. The scalaD.g can then be obtained taking a scalar
product ofQ andS. The components @& comprise of the coor- There is a discontinuity at = f in Eq. [26], which corresponds
dinates of the NH unit vector in the molecular frame. The firge the NH vector pointing along theaxis of the diffusion tensor.
term on the right-hand side of Eq. [22] comes from the rankAX this point the effective diffusion constant is given By =
(isotropic) component and the second term comes from the cPxx + Dzz)/2. This validates the suggestion of Cloge al.
traction of the rank 2 component. The rank 1 component is z€), who proposed that the maximum of tRg/ R; distribution
sinceD (and therefor®) is a symmetric tenso2g). Simplifying  function corresponds to the NH vectors pointing alongythgis

(27]

Eq. [22], we obtainZ, 3 of the diffusion tensor.
Dett = QuxX® + Qyyy” + Qz27° + 2Qux2 Singular Value Decomposition Approach
+2QuyXy + 2Qyyz [23] In the case where we have determinednd henceDgs for

n different NH vectors, we may write Eq. [23] in a matrix form

Dest has transformation properties similar to residual dipola‘a’S
couplings measured for proteins in orientated syste3nQ).

rpl _ -
Clore et al. have proposed previously that tH&/R; ratio Deit X2 Y2 7 2ayn 2z 24z M
(which determine®er, cf. Eq. [13]) displays a dipolar powder- | p2, X3 Y5 75 %2 2YeZx 2XZp
pattern behavior for a uniformly distributed set of NH vectors .. . : . Quy
(7). Though an analytical proof is very difficult in the gen-| - | | ) ) ) Qzz
eral case, it may be obtained quite easily in the case of small - | — Qxy
anisotropy. Equation [23] can be rewritten in polar coordinates - S ’ ' ' Q2
as . . : .
D, X2 Y2 Z2 2XnYn 2YnZn 2XnZn | L Qxz
Dyy — Dxx _; e ) )
Dett = Diso + = Sir? 6 cos(2) [28]
_ 2DZZ - DXX -

Dyy
12 (3cog 6 — 1). [24]  Equation [28] can be written in symbolic form as

We define three new variableg, = (D,; + Dyy — 2Def)/ Deit = AQ, [29]
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whereDeg is ann-dimensional column vectoA is ann-by-6 determination may be characterized by
matrix, and@ is a six-dimensional column vector composed of
the elements of th@ tensor in Eq. [21]. The elements @fand 1[ (D — D§) 72
hence those dD can be obtained by inversion of Eq. [29]. The €q = 100 Z §[ Dact } )
pseudo-inverse ok can be written in the following way3(),

[32]

i=Xx,y,z

The erroris 0 when there is perfect match between the actual ar
. _ 1 T calculated values. We can formulate a similar definition for the
A=V dlag(—> U, [30]  error in the orientation of the diffusion tensor. This is given by

)

Tracg R*(«, 8, y)R“(«, B, v)"|
whereU is ann-by-6 column-orthogonal matri%/ is a 6-by-6 ~ €a = 1001 — 3 - [33]
orthogonal matrix, angj are the singular values éf. In the case
where the matriA contains redundant data, which may ocCufye gpgolute values of the rotation matrices are used i

when two or more vectors are nearly parallel, it is singular. T .[30] because inspection of Egs. [7] and [12] reveals that th
singular valuess; , corresponding to those rows are zero, leading,  inates occur as even powers and hence the ratio in Eq. [

to instabilities in Eq. [30]. This instability is characterized bys i ariant to an even number of successive reflections about tt
the so-called condition number of the matr80), which is the %=y, x—zory—zplanes 81). The solution space of Euler angles is

absolute ratio of the largest to the smallest singular value §f. tourfold degenerate for a right-handed coordinate syster

the matrix. The condition number of a matrix is infinity wheq.e. @, B,y), (o, 8,180+ y), (180+ «,180— B,180— y)

a singular value is 0. This problem is solved by settirig; 1o and (180+ o, 180 — B, 360— y) are all valid solutionse, is

zero for the problematic rows. This corresponds to removal gt ;hen the actual and calculated orientations are the same, a

the corresponding rows from the matrix, which is justified 14 \hen the two orientations are orthogonal to each othe
since this amounts to removal of redundant data. In the presgnjures 1a and 1b show thg ande, as functions of andy
case this operation is performed until the condition number of, ;1ated from simulated relaxatia:)n daf, ( Ry, and NOE)

the matrixis less than 5. Using Eq. [30]in Eq. [29], we obtain thg,, ; st of 50 uniformly distributed vectors with, value of
elements ofQ and we can reconstruct tlg@ matrix and hence 4.0 x 10’ s at 600.13 MHz. The Euler angles relating the

the D matrix (see Eq. [21]) which is then diagonalized to yielghi sion tensor frame to the molecular frame are given by
the eigenvalues of the diffusion tensor and the orientation of the_ B = y = 45°. The angular errors remain very small (much

principal axes with respec_t to the mo_lecular frame. i smaller than 1%) even for highly anisotropic systems while

However, as was mentioned previously, Eq. [23] is N0t ag5e error in the principal components becomes large for highly
plicable in the general case and holds only for systems with,giq oo pic diffusion tensors. Thus the approximate approach
small degree of anisotropy. Application of Eq. [23] t0 Systemg.. ,rate in determining the orientation of the diffusion tensol

With substantial anisotropy may lead to errors in determina_\ti%en for highly anisotropic systems. Also shown in Fig. 1c is
of the diffusion tensor (see below). The anisotropy of the diffu- , which is the percentage error Dy (the largest in this

sion tensor is characterized by two parameters—the first, whig e). Figure 1d shows the RMS erregd) in the isotropic

characterizes the anisotropy, is given by value of the diffusion tensor as a percentage of its actual value
As is evident, the error in isotropic value is smaller thamue
2D,, to the self-compensatory nature of the errors in the individua
¢= m [31a] values of the principal elements of the diffusion tensor.
To summarize, the approximate approach solves Eq. [28] fc
the elementX);; of the Q tensor, followed by the reconstruc-
The second, which characterizes the rhombicity, is given by tion of theQ tensor and its diagonalization to obtain the prin-
cipal elements and orientation. The principal elements of th
3(~1)"(Dyy — Djj) ¢ D tensor can be obtained from the principal elements of3he
== , [31b] tensor using Eq. [21]. We observed that the Euler angles ok
2 D,, r—1 : . )
tained using the approximate approach are more accurate th
the principal values of the tensor. We believe that the accurac
wherej = zandn = 1 for an oblate ellipsoid,, > Dy, > Dyy); of the approximate approach in predicting the orientation of the
j =xandn =2 for a prolate ellipsoid@,, > Dyy > Dyx); 7=0 Q tensor (and therefore the tensor) lies in the second step
for an axially symmetric diffusion tensor; whidle= 1, n = Ofor  of the procedure, i.e., reconstruction and diagonalization of th
an isotropic diffusion tensor. In order to characterize the errd@stensor. To illustrate this, let us adopt a perturbation theory
in the tensor determination from the approximate method, w@proach. When the anisotropy is small, both the principal val
define two more parameters. The error in the principal elemargs and the orientation of tli@tensor are predicted accurately.
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FIG. 1. Plots of the errors in the principal values of the diffusion tersgofa) and those in the orientatien (b), estimated using the SVD approach, as a
function of the anisotropyz( and rhombicity §) of the diffusion tensor. The errors have been calculated from simulated relaxatiorRgaty (and NOE) for
a set of 50 uniformly distributed vectors withl,, value of 40 x 10’ s~1 at 600.13 MHz. The Euler angles relating the diffusion tensor frame to the molecula
frame are given by = g = y = 45°. Also shown are the error in tHeyx principal component (c) and the isotropic diffusion constap8)(Ir(D) (d).

As the anisotropy increases, the error in prediction of the corregven by

tensor, we calR®, by the approximate method that yields tensor

Q increases. In this cas®, may be treated as a perturbation on N Qj

the result obtained from the exact analy$p); Let the correct & =30 _ o [35]
tensor be characterized by the eigenval@8sand eigenvectors Il !

(which represent its orientatiomy. Thus,Q = Q°+ Q' and the
first-order correction to the eigenvalues is given@y = Q;;
which are the diagonal elements of the perturbati@n The
absolute values o®} show a monotonic increase as the ma
nitude of the anisotropy (and the norm @f) increases since

Q shows larger and larger deviations fr@d. This correction imat Ivsis d t deviat h th U
to the eigenvalues can be considered to represent the error@%apprOX|ma € analysis does not deviate much from the actu

predicting the correct eigenvalues by the approximate meth&glentation. This proof is not rigorous, as the perturbation theory

The eigenfunctions df can be written as a linear combinatiorf"lploroaCh.does nczt hold when the anisotropy is very large; i.e
of the eigenfunctions d@° as the magnitude o)’ becomes comparable to that@f.

Thus, the singular value decomposition approach can be use

As the anisotropy increases, the increase in the numerator
mirrored by the increase in the denominator (as the anisotrop
increases, the differences between the eigenvalues of the te
dsorQO become more pronounced). Thus thedo not show a

large deviation from the.?; i.e., the orientation predicted by

0o to restrict the angular space spanning the angl@s andy ina
A=A+ Z a{} A?. [34] subsequent, more accurate search for the diffusion tensor usir
n=1 j#i the exact equations represented by Eqs. [4]-[9] (or Egs. [8]-

[12] in the axially symmetric case), thus greatly reducing com-
The first-order correction, represented by the coeﬁicziaé]enﬁs putational time as opposed to a grid search over the entir
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three-dimensional space of Euler angles without compromisifgr the case of an infinite set of uniformly distributed NH vec-

the generality of the approach. tors, R assumes an indeterminate fornmy@) for an isotropic
diffusion tensor as is evident from Eq. [36] and Eq. [37]. At
Quality Factor for the Diffusion Tensor this limit, the quality factor introduced here is invalid, as is the

) ] o quality factor for residual dipolar couplings introduced by Clore
In order to estimate the quality of the diffusion tensor calcyng Garrett32). A similar quality factor for relaxation data has

lated from experimental data, itis necessary to provide ameasggn suggested recently by de Akzaal. (33).
of how well the relaxation data calculated using the estimated

diffusion tensor agree with the experimental data. The effec- APPLICATIONS
tive diffusion constanD¢x shown in Eq. [23] can be used as

a measure of the quality of the estimated diffusion tensor. Félomputer Simulation

lowing the definition used by Clore and Garred2) for the

lity factor f dual dinol i the similarity b Table 1 shows the results of the application of the approxi
quality tactor for residual dipolar couplings (the similarity ©mate method to two different random distributions of 50 vectors
tweenDgs and dipolar couplings has been demonstrated abo

X . ) . Y5t a fully anisotropic, an axially symmetric, and an isotropic
v;hben the anisotropy is not large), we define a quality faCt%I'if‘fusiontensor. Relaxation data were generated for these distr
y butions using different sets of principal values and orientation:
of the diffusion tensors. The random errors were 1, 2, and 59
in the Ry, Ry, and NOE measurements, respectively. The error
in the values of the principal elements of the diffusion tensor a
well as the tensor orientations were obtained from 5000 Mont
Carlo simulations using the random error in the relaxation date
In the case of the fully anisotropic diffusion tensor, the orienta-
where the brackets imply an average over all the available Nidn of the principal axis frame in the molecular frame is shown
vectors. A quality factor defined in this form is expected to bi@ Fig. 2a. In this case, all three Euler angtess, andy are
more stable to the completeness of the data set thary thewell defined. In the case of the axially symmetric diffusion ten-
value obtained from a nonlinear least-squares fit. In the cassr (Fig. 2b), the angle is arbitrary since there is only one
of an infinitely large set of uniformly distributed NH vectorsunique axis, the axis, while thex andy axes have no unique
((DZY?) = ((DSE)?) and(D3S) = (D), makingR = 1. In  grientation. There is no unique orientation for any of the axes fo
this case, the standard deviation of the distribution is expressgtlisotropic diffusion tensor as is shown in Fig. 2c. In the cast

obs calc)2
ae | 02— 0 a6
2{(Dgi - (DgtY)’)

analytically (for small anisotropy) as where the approximate analysis yields uniquely defireg,
) " andz directions for the diffusion tensor, the mean and standar
(D& — (D)) deviation of«, B andy are determined from the distribution

) ) using Eq. [9]. The distribution of the Euler anglesg, andy
= 1 [(ZDZZ — Duc— Dyy) + (Byy — Dx) } [37] corresponding to the orientation of the diffusion tensor axes fo
15 12 4 Fig. 2a is shown in Fig. 2d. The values of the diffusion tensot

TABLE 1
Comparison of the Input (i) and Calculated (c) Values Using the Described SVD Approach on Simulated Relaxation Data for a Set of
50 Uniformly Distributed NH Vectors?

Type (i) Dxx()) Dxxa(€)  Dyy(i) Dyya(c)  Dzi) Dzza(c)  af) a(c) B B(c) 140) v(©)

1. Full 16.67 0.80 0.8+0.01 1.00 0.9%0.01 1.20 1.190.01 45 43.1H20 45 46.8:15 45 435:22

2.Axial 16.67 090 0.8%0.01 090 092001 120 119001 45 47.8:18 45 45714 45 U
3.1s0 16.67 1.0 0.9%0.01 1.0 1.060.01 1.0 1.02£0.01 45 U] 45 w 45 w
4. Full 833 1.0 0.9%0.02 2.0 2.040.02 3.0 2.96:0.02 25 24411 45 447412 60 60.6£1.0
5.Axial 833 15 1.46:0.02 15 1.52:0.02 3.0 291002 25 27510 45 45807 60 v
6. I1so 833 20 1.96002 20 2.060.01 2.0 2.05:0.02 25 U] 45 v 60 w

@ The 1.(i) values are in ns, and arg/(2Tr[D(i)]). The tc(c) (not shown) can be calculated from the elementB(@f. The values of the diffusion tensor
elements are in units of 1&~1. The values of the Euler angles, (8, ) are in degrees. The (i) and (c) refer to the input and extracted values for the variou
elements. The errors in the extracted values have been calculated using 5000 Monte Carlo steps using the noise in the relaxation Bat2%a %61f&%, and
5% for NOE).

b For the axially symmetric diffusion tensor, tkendy axes of the diffusion tensor and hence the angéee arbitrary. Thus, since the SVD approach fits a
fully anisotropic model to the data, all valuesyofn the ®—360 range are obtained as solutions. This is indicated by the letter U, signifying a uniform spread i
the calculated values. In the case of the isotropic diffusion tensor, the relaxation rates are completely independent of the orientation otdnaiNH veoce,
all three axes of the diffusion tensor and hence the anglgsandy are arbitrary.
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1 1

FIG. 2. Distribution of eigenvectors for a fully anisotropic (a), axially symmetric (b), and isotropic (c) diffusion tensor. In the case of the fullppigisotr
diffusion tensor, all three axes are well defined. In the axially symmetric case, ordasieis unique, while th& andy axes of the diffusion tensor are arbitrary.
In the isotropic case, all three axes are arbitrary. Also shown (d) is the distribution of Euler angles corresponding to the distribution of {a)theHidlty
anisotropic case. It is evident that all three Euler anglg$, andy are well defined and there are four degenerate solutions (in a right-handed coordinate syste

obtained by this analysi€xa, Dyya, Dz.5 are then used as start-metric tensor are performed using Egs. [8]-[12] constraining the
ing values in a simplex search over a three-dimensional gridarigular space to lie between[, + K1 Aa, Bz, = KoAB, y = 0]
the Euler angles, 8, andy (1° steps) using the exact equawhere the angles are determined from the last row of Eq. [9] set
tions given by Eqgs. [4]-[9]. The angular space is constrainedting y = 0 and usingDjja + Dika)/2 @andDiia, (i, j, k=X, Y, 2)
lie between &, + K1Aa, Ba, = KoAB, ya, &= KzAy], where as starting values for the search (whég is the unique value
Xaw andAX (X = «a, B, v) are the average values and standambtained from the approximate analysis). In the case where th
deviations of the Euler angles obtained from the approximapproximate analysis indicates an isotropic tensor (when th
analysis. standard deviation of the values of all three angle$, and
TheK; (i =1, 2, 3) are determined in the following way—wey > 35°) fits are performed to both the axially symmetric and
start with initial K; values of 2.0 and perform the calculation. Ithe isotropic models with the search extending over the entir
the boundary of the restricted space of an Euler angleis hiton temace ofae and 8 angles in the case of the former fit using
successive steps of a calculation, #yevalue corresponding to [( Duxa+ Dyya)/2, Dz.4 as starting values. The above procedure
that particular Euler angle is increased by 0.5, thus widening tisdmplemented in a MATLAB 84) package DIFFTENS shown
search space for that Euler angle. In all the cases we investigasathematically in Fig. 3.
we used rather conservative fingl values that varied from 2.0 It should be restated here that in the case when an axially syn
to 5.0. metric modelisfitto a diffusion tensor which is fully anisotropic,
In the case where only theaxis is uniquely defined (this is one obtains two minima which are similar in thgif values—
assumed to be the case when the standard deviation of the angke corresponding to an oblate tensor and the other to a prola
y > 35°), the fit to the fully anisotropic diffusion tensor usingtensor b). We can, however, estimate whether the tensor is in:
the exact approach is not performed but fits to the axially syrdeed closer to an oblate or prolate model by investigating the
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The results of the application of the exact approach with the

INPUT

Relaxation Data : Ry, Re and NOE|

Coordinates of vectors

angular space restricted by the results of the SVD approach a
shown in Tables 2a and 2b for the fully anisotropic diffusion
tensors from Table 1 (Type 1 and 4). For very highly anisotropic

: systems, the values of the diffusion tensor elements themselv

Calculate p from Caloulate A Matr fom are not accurate, as noted above. In these cases, it might
Ri,Reand NOE vector coordinates necessary to use a few different, close values for the initia

| [ guesses for the diffusion tensor elements input into the simple

Calculate Der Perform SVD an search, so as to avoid obtaining a false minimum. This coul
AMaix be done, for example, by multiplying the values of the tensol

[ | elements obtained by the SVD approach by different scalin

; Cakuete @ |-{ Deternine pseudo-inverse of 4 | factors. However, the angular restriction still holds, because th

Diagonalize Q and

Inspect eigenvectors of @

orientation of the diffusion tensor obtained by the SVD approact
is still very accurate, as demonstrated above, and herein lies

obtain starting values for andextractfntlean and real power of this hybrid approach'
Dixxa,Dyya,Dzza standard deviation of the
Eumn?lesam Application to Real Systems
Choose type of it Application I—Test case: Ubiquitin.Tables 3a and 3b dis-
""i:’;“d;‘fg:?" play the results of the above analysis applied¥-labeled
mp‘ ubiqutin. The orientations of the NH vectors from the crystal
[ I L. structure (Lubgpdb) were usedR;, R, and NOE data were
ikt pom i S ane: those provided by Tjandret al. (1). Residues which exhibited
D Dyya,Dazs, (Dje+Diia)2,Dia (Dot Dyt Deza)f3 significant exchange effects or rapid motion on the fast timescal

a{kl+a), b (2:B), 1 (3%)

o (k1¢0), B (x2+B)

(NOE < 0.7) were excluded from the analysis. In all, 55 residues

were included in the analysis (these were the same as those U

Perform stafistical analyses :

Confidence: Constant 32 bounds
F-test for statistical significance

lized by Tjandraet al. (1)). It is interesting to note that the

approximate analysis indicated a fully anisotropic tensor with

the principal elements given Wy, = 3.76+ 0.02 x 10’ s71,

I

Report final values for Diffusion
tensor

Dyya = 3.88+ 0.02 x 10’ s7%, and D,,5 = 4.46 + 0.02 x
10’ st (¢ = 0.17 andn = 0.28), with the Euler angles re-
lating the diffusion tensor frame to the molecular frame giver

FIG. 3. Schematic representation of the MATLAB program DIFFTENDY o = 489+ 2.7°, 8 = 387 £ 1.6°, andy = 791+ 6.9°.
used to estimate the diffusion tensor. In the case of the fit to the axially symmeffine errors were determined from 2000 Monte Carlo simulation:

model the starting values for the axially symmetric fit are choséias(Djja +
Dika)/2 (i, j. k = X, Y, ), whereDijj is the unique value anDjj, and Dy, are
closest in value to each other as obtained from the SVD analysis.

utilizing the experimental error in the relaxation rates. The ex
act analysis using the values Dfya, Dyya, andD,.,as starting
values and constraining the Euler angles3, andy to lie in

the range 49t 6°, 39+ 5°, and 79+ 14° yielded values of
principal values obtained from the approximate analysis. The dpgx = 3.76 £ 0.17 x 10’ s %, Dyy = 3.88+0.17 x 10" 571,
proximate approach considers the fully anisotropic tensor angisd D,, = 4.46+ 0.14 x 10’ s* for the principal elements of
thus free from the two-minima problem. Thus, in our subsequehtk diffusion tensor ana = 48.0° + 14.0°, 8 = 39 £+ 9.0°,

fit to the axially symmetric model, only the relevant minimunandy = 85° £ 37.0° for the Euler angles. The confidence limits
is investigated. for the principal elements were determined using the metho

TABLE 2a
Results for Simulated Tensor 1—Final Results?
Model Dxx Dyy D:z o B % T x? F P (%) R®
Full 0.81+ 0.02 0.98+ 0.02 1.19+ 0.02 43 47 43 16.72 42.38 — — 0.16
Axial 0.904+ 0.01 0.90+ 0.01 1.19+ 0.02 49 47 — 16.77 153.16 57.49 5.32& 0.31
Iso 0.97+ 0.01 0.97+ 0.01 0.97+ 0.01 — — — 17.15 776.49 62.41 3.02¢ 0.71

2The exact calculation was performed for the simulated tensor 1, shown in the first row of Table 1 using the above starting values for the tensor el
and using the results of the SVD analysis to restrict the space of Euler angles. The restricted angular space @< 6°, 8 = 47+ 5° andy
43+ 7°.

b R has been calculated from Eq. [36].
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TABLE 2b
Results for Simulated Tensor 4—Final Results?
Model Dyxx Dyy D, o B y Te X2 F P (%) RP
Full 0.99+ 0.05 2.01+ 0.05 3.05+ 0.06 24 46 61 8.27 70.87 — — 0.09
Axial 1.464 0.08 1.464+ 0.08 2.85+ 0.16 20 46 — 8.66 1188.67 347.01 1.14e 0.43
Iso 1.82+ 0.03 1.82+ 0.03 1.82+ 0.03 — — — 9.17 3664.06 31.99 2.608 0.75

aThe exact calculation was performed for the simulated tensor 4 shown in the fourth row of Table 1 using the above starting values for the ten:
ements and using the results of the SVD analysis to restrict the space of Euler angles. The restricted angular spac2dwds, g =46+5°, and
y =61£5°.

b R has been calculated from Eq. [36].

of constanty? boundaries 30) (the 68.3% confidence limits ally symmetric diffusion tensor, though a valid approximation
are reported). The confidence limits of the estimated Euler dA-the unligated form, is not expected to hold in the ligated case
gles were obtained from the widths of the contour maps of ti#ere, we apply the fully anisotropic model to the ligated form
target function from the covariance matrix calculated by utili2f the SH(32) dual-domain system of Abelson kinase. As is
ing the principal elements of the diffusion tensor obtained ahown by the results of Tables 4a—4d a fully asymmetric diffu-
the x2 minimum. Examples of portions of the-8 projection sion tensor is indicated for both domainsRaalue of less than
and thea—y projection near the minimum of the 3D contoub% is considered to be statistically significant). The rhombic-
map are depicted in Figs. 4a and 4b. The valug dfat the ity in the tensor is quite large with = 1.14 andn = 0.68
minimum was found to be 656.11. Performing the fit to the afor the SH2 domain while the corresponding values for the
ially symmetric model yielded values &, = 3.824+ 0.06 x SH3 domain are 1.29 and 0.95, respectively. The magnitud
10’ s'andD; = 4.434+0.11x 10" s™* (¢ = 1.16) for the prin-  of the rhombicity can be attributed to the presence of the con
cipal elements of the diffusion tensor ame= 48.0°+15.0° and solidated ligand on one face of the dual-domain construct. Th
B = 39 £ 9.0° for the Euler angles (Fig. 4c depicts a portion oprincipal components of the diffusion tensor as determined fron
the contour map of the target function at th&€minimum) and the individual domains seem to differ slightly, being marginally
there was a marginal increase in the valugdfto 680.85. A larger in the SH3 domain. This indicates a small amount of rel
statistical analysis of the significance of the results usingtheative motion between the two domains. This motion could be
test B0) yielded anF value of 0.93 and indicated that there wasaused by some residual mobility of the two domains in the
a59.9% probability that the marginal change in ffeby going  ligated state, as well as the on/off processes associated wi
from the axially symmetric to the fully asymmetric model waghe consolidated ligand binding at one or both sites. We uti-
obtained by chance. However, the decrease inthalue in go- lized the orientation of the NH bond vectors for the individual
ing from the isotropic to the axially symmetric model was foungomains in the Abl-SH(32) crystal structure (2apdib). Struc-

to be statistically significant (see Table 3b). This is in completgral studies on other SH2 domains indicate that ligand binding
agreement with previously obtained resutts3). The entire cal- has no significant effect on the protein co8®,36). A crystal
culation (excluding the detailed analysis of the errorsin the Eulglructure is available for the Abl-SH3 domain complexed with
angles) required approximagel h on aPentium Il computer ligand (1abo pdb). The NH vector orientations obtained from
operating at 733 MHz. The slowest step in the calculation wdbis (1abo pdb) structure produced no significant changes in
as expected, the grid search over the restricted subspace of Eiflerresults for the SH3 domain. In both cases, only the cor

angles for the fully anisotropic and axially symmetric modelsresidues were used to calculate the diffusion tensor. In the cas
of the SH2 subdomain of the core residues, the residues 16

Application 11—SH(32) dual-domain construct of Abelso78 exhibit conformational exchange and were excluded fron
kinase complexed with a consolidated ligandn the dual- the relaxation analysis. Further, the residues 153, 174, 176, 18
domain construct of the SH2 and SH3 domains of Abelsd®1, 193, and 204 showed large errorsRp and R, values
kinase complexed with a consolidated ligand, the relative ofi>10%) and were excluded (49 residues used). Table 4b shov
entation of the two domains can be obtained by determinatitve results of the analysis. In order to assess the quality of th
of the diffusion tensor individually for each of the two domaingstimated diffusion tensoR values (from Eq. [36]) were esti-
separately and then by aligning the two tensor af@sThis mated for the fully anisotropic, axially symmetric, and isotropic
approach is valid only for systems in which the two domairdiffusion tensors. These values were found to be 0.61, 0.63, ar
are relatively rigid with respect to each other, so that the rd)-70 for the three models. THe values obtained on inclusion
ative mobility of the individual domains is limited. In an earof the residues excluded from the tensor estimation due to larg
lier publication, the change in relative orientation of the twerrors were 0.64, 0.66, and 0.70. Though, in this case, the valu
domains on binding to a consolidated ligand was investigatetithe R factors were marginally higher, the fully anisotropic
assuming an axially symmetric diffusion tens@).(An axi- model produced a loweR factor than the two other cases. In
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TABLE 3a
Results for Ubiquitin at 600 MHz—SVD Analysis
Dxxa Dyya Dzza o B Y
Results from SVD 3.76:0.02 3.884+ 0.02 4.46+ 0.02 48.9+ 2.7 38.7£ 1.6 79.2+ 6.8
Input into simplex 3.76 3.88 4.46 43-55 34-44 65-93
TABLE 3b
Results for Ubiquitin at 600 MHz—Final Results
Model Dyx Dyy D, o? B y Tc x2 F P (%) R
Full 3.76+ 0.17 3.88+0.17 4.46+ 0.14 48+ 14 39+9 85+ 37 4.13 655.91 — — 0.55
Axial 3.82+ 0.06 3.82+0.06 443+ 0.11 48+ 15 39+ 9 — 4.14 680.86 0.93 59.93 0.55
Iso 4.06+ 0.16 4.06+ 0.16 4.06+ 0.16 — — — 4.10 1139.90 11.46 74% 0.71
2 The definitions of the Euler angles used here are different from but consistent with those of Ejeald(d).
TABLE 4a
Results for SH2 Domain for SH(32)/Ligand at 600 MHz—SVD Analysis
Dxxa Dyya Dzza o B 14
Results from SVD 1.36 0.02 1.54+ 0.02 1.66+ 0.02 168.2+ 4.2 81.5+ 10.1 99.44+ 8.3
Input into simplex 1.36 1.54 1.66 153-183 52-112 74-124
TABLE 4b
Results for SH2 Domain for SH(32)/Ligand at 600 MHz—Final Results
Model Dyxx Dyy D, a B y T x2 F P (%) R
Full 1.34+0.08 1.56+ 0.08 1.65+ 0.09 156+ 16 61+ 30 115+ 12 10.96 58.33 — — 0.61
Axial 1.45+ 0.04 1.45+ 0.04 1.66+ 0.08 168+ 33 91+ 41 — 10.91 75.94 6.49 0.34 0.63
Iso 1.54+ 0.01 1.54+ 0.01 1.54+ 0.01 — — — 10.85 90.63 2.90 452 0.71
TABLE 4c
Results for SH3 Domain for SH(32)/Ligand at 600 MHz—SVD Analysis
Dyxxa Dyya Dzza o B 4
Results from SVD 1.2& 0.02 1.65+ 0.02 1.89+ 0.02 187.5+-6.4 50.0£ 15 178.6+ 11.0
Input into simplex 1.28 1.65 1.89 168-208 40-60 148-208
TABLE 4d
Results for SH3 Domain for SH(32)/Ligand at 600 MHz—Final Results
Model Dyx Dyy Dy, o B y e %2 F P (%) R
Full 1.31+0.17 1.62+ 0.18 1.89+ 0.12 197+ 27 47+ 7 166+ 26 10.36 25.86 — — 0.47
Axial 1.46+ 0.07 1.46+ 0.07 1.88+ 0.13 203+ 24 54+ 11 — 10.44 36.27 3.83 4.02 0.58
Iso 1.60+ 0.02 1.60+ 0.02 1.60+ 0.02 — — — 10.44 57.07 4.01 2.10 0.70
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FIG. 4. Representation of a portion of the 3D contour map of the target function for a fully anisotropic diffusion tensor for ubiquitipZtiinémum. The
a—p (a) andxe—y (b) projections are shown. Also shown is a portion of the corresponding 2D contounm@)f¢r the fit to the axially symmetric diffusion tensor
(c). Only the region in the vicinity of one of the minima is depicted. There are four symmetry-related minima in the case of the fully anisotrogindemsor
symmetry-related minima in the case of the axially symmetric tensor. The 68.3% confidence limits for the Euler angles have been obtained fraouttraapson

the case of the SH3 subdomain, residues 87, 89, and 99 wierthe principal axis frame of the diffusion tensor, the pdb frame
excluded from the analysis due to conformational exchange asfdSH2, and the pdb frame of SH3, respectivély,p and Rsi
residues 66, 93, and 99, due to the large erroRjnand R, are the transformation matrices which transform the individua
values (25 residues used). TRefactors obtained for the three pdb frames of SH2 and SH3 into the principal axis frame of the
models were 0.47, 0.58, and 0.70. Inclusion of residues 66, @#fusion tensor. Thus, the Euler angles that transform the pdl
and 99 yieldedR values of 0.53, 0.58, and 0.70, respectivelframe of SH3 into the pdb frame of SH2 can be obtained from
Note that the above-mentioned residues with large experimdRyr = Rg&,z Rsis. There are four valid solutions for the relative
tal errors were included in the previous analysis of the SH(3@jientation of the two domains (in a right-handed coordinate
data @). The quality factor analysis then justifies their exclusioframe) 7). However, some of this degeneracy may be resolvec
in the present analysis, which yields results which are largalging chemical-bonding considerations such as the fact that tr
consistent with those obtained in earlier studies (see belw) (N-terminal part of the SH2 domain is linked to the C-terminal
The total computation time required was abo§m2for the SH2 part ofthe SH3 domain. Further, the presence of the consolidate
and % h for the SH3 domain. ligand makes certain conformations impossible. In the preser
The relative orientation between the two domains can be atase, of the four allowed solutions, only one puts the N-terminu:
tained, for example, by transforming both domains into the franoé the SH2 domain close to the C-terminus of the SH3 domair
of reference of the diffusion tensor. This can be representéd8 A), allowing chemical ligation to occur with minimal re-
mathematically by orientation of the loop region at the C-terminal end of the SH2
domain (as compared to the unligated case as derive@)in (
In the three other cases, the corresponding distances vary fro
wherer g, rsip, andr s are the coordinates of an arbitrary vectoll 7.4 to 24.3A, making these impossible to achieve. Shown in

ra = Rstersie = Rsiefste, [38]
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rotation bya =316, 8 =102, andy =251° of the SH3 do-
main with respect to the SH2 domain (the individual rotations
beingae =156, 8 =61°, andy =115 for the SH2 domain and
SH3 C-Terminus a=17,8=133, andy =194 for the SH3 domain). The rel-

: ative “bend” between the two domains structure is quite similar
SH2 N-Terminus within experimental uncertainity, to that obtained previously by
Fushmaret al. (6). However, in that case, the assumption of
an axially symmetric diffusion tensor required the interdomain
“twist” to be chosen empirically, allowing optimal binding of
the consolidated ligand. The orientation of the two domains ob
tained here brings the binding sites on the two domains into
proper position to accommodate the consolidated ligand.

The moderately large errors in the determination of the Eule
angles relating the molecular frame to the principal axis frame
of the diffusion tensor for the individual SH3 and SH2 domains
reflect on the quality of the relaxation data. This method for the
determination of domain orientation is completely general anc
can yield very accurate results when the quality of relaxatior
data is high and the anisotropy of the system is large.

CONCLUSIONS

We have provided a simple and efficient way of obtaining the
rotational diffusion tensor of proteins of known structure, from
relaxation data, using a combination of approximate and exac
methods, resulting in a significant reduction in computation time
as opposed to a grid search over the entire three-dimension
space of Euler angles relating the molecular frame to the prin
. cipal axis frame of the diffusion tensor without compromising
SH3 C-Terminus  the generality of the approach. The approach is implemente
in a MATLAB package DIFFTENS, which can be obtained by
e-mail at the following address: ghoser@miriris.rockefeller.edu
. The utility of this approach has been demonstrated in the dete
SH2 N-Terminus  mination of the interdomain orientation between the SH3 an
SH2 domains in a SH(32) dual-domain construct of Abelsor
kinase complexed with a consolidated ligand.
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