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Determination of the Rotational Diffusion Tensor of Macromolecules
in Solution from NMR Relaxation Data with a Combination of Exact

and Approximate Methods—Application to the Determination
of Interdomain Orientation in Multidomain Proteins
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In this paper we present a method for determining the rotational
diffusion tensor from NMR relaxation data using a combination of
approximate and exact methods. The approximate method, which
is computationally less intensive, computes values of the principal
components of the diffusion tensor and estimates the Euler angles,
which relate the principal axis frame of the diffusion tensor to the
molecular frame. The approximate values of the principal compo-
nents are then used as starting points for an exact calculation by a
downhill simplex search for the principal components of the tensor
over a grid of the space of Euler angles relating the diffusion tensor
frame to the molecular frame. The search space of Euler angles is
restricted using the tensor orientations calculated using the approx-
imate method. The utility of this approach is demonstrated using
both simulated and experimental relaxation data. A quality factor
that determines the extent of the agreement between the measured
and predicted relaxation data is provided. This approach is then
used to estimate the relative orientation of SH3 and SH2 domains
in the SH(32) dual-domain construct of Abelson kinase complexed
with a consolidated ligand. C© 2001 Academic Press

Key Words: relaxation; rotational diffusion tensor; singular value
decomposition; domain orientation.
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INTRODUCTION

Over the past few years, attention has been focused on th
termination of several orientation-dependent properties suc
the rotational diffusion tensor from NMR relaxation measu
ments (1–7 ) and the molecular alignment tensor from res
ual dipolar couplings (8–10). These measurements that provi
long-range orientational information often complement the l
of long-range NOEs, and are now routinely included in struct
refinement protocols (11). Both methods mentioned above pr
vide approaches to the determination of interdomain orienta
in weakly interacting multidomain systems (6, 12–14) where
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interdomain NOE information is scarce. The accurate deter
nation of the rotational diffusion tensor is also important sin
it is essential to interpret correctly relaxation data in terms
local dynamics on the fast (ps–ns) timescale (15–17).

The influence of the nonisotropic nature of the over
tumbling on NMR relaxation in the solution state has be
known since the work of Woessner (18). Early experimental
applications to macromolecules were by Tjandraet al. (1),
Broadhurstet al.(19), and Bruschweileret al.(2). In the work of
Tjandraet al., hydrodynamic calculations were used in conjun
tion with relaxation measurements to characterize the rotatio
diffusion tensor in ubiquitin. Bruschweileret al. (2) showed
that, for a small degree of rotational anisotropy, the diffus
tensor, in any arbitrary frame of reference, can be written
quadratic form, thus simplifying the analysis. This method w
applied to the determination of the diffusion tensor in ubiqui
and ribonuclease-H by Leeet al. (3). Other groups have use
the exact equations provided by Woessner (18) to determine the
tensor in the axially symmetric case (6, 15–17, 20).

Blackledgeet al. (5) have shown that, in the presence of
significant deviation from axial symmetry, fitting to an axial
symmetric model yields two nearly indistinguishable minim
corresponding to diffusion as an oblate or as a prolate ellips
This necessitates, in the case of significant anisotropy and
viation from axial symmetry of the diffusion tensor, use of t
exact equations of Woessner (18) for a fully anisotropic diffusion
tensor. This approach requires a search over a six-dimens
parameter space corresponding to the three principal value
the diffusion tensor and the three Euler angles relating the p
cipal axis frame to the molecular frame. This approach is v
computationally intensive and time-consuming. Alternative
proaches have recently been suggested which employ simu
annealing (21) or Bayesian statistics (22). The former approach
is completely general though the latter makes assumptions a
the nature of the diffusion tensor.

In this paper we propose an alternate, hybrid approach
the first step, this procedure uses the approximate approac
Bruschweiler (2) and Lee (3) to obtain starting values for the
4



i
u
g

a

a

]

e

sti-
ese

ral
first

cal

sor
DETERMINATION OF THE ROT

principal components for the diffusion tensor as well as to
strict the values of the Euler angles relating the principal a
frame of the diffusion tensor to the molecular frame. The v
ues of the principal components obtained from the approxim
analysis are then used, in the second step, as starting
for a three-dimensional simplex search for the tensor val
combined with a three-dimensional search for the Euler an
which relate the principal axis frame of the diffusion tensor
the molecular frame. The Euler angle search is performed
a three-dimensional grid comprising the angular subspace
stricted using the results from the approximate method. We
determine a quality factor for the estimated diffusion tens
The quality factor provides a measure of the agreement betw
measured relaxation data and that calculated using the estim
diffusion tensor.

THEORY

Heteronuclear Relaxation

For a heteronuclear15N–1H system, the15N relaxation rates,
R1(1/T1), R2(1/T2), and steady state heteronuclear NOE
given by

R1 = d2[ J(ωH −ωN)+ 6J(ωH +ωN)]

+ 3(c2+ d2)J(ωN) [1a]

R2 = d2

2
[ J(ωH − ωN)+ 6J(ωH )+ 6J(ωH + ωN)]

+ (c2+ d2)

[
2J(0)+ 3

2
J(ωN)

]
[1b]

NOE= 1+
d2
(
γH

γN

)
[6J(ωH + ωN)− J(ωH − ωN)]

R1
[1c]

with d = −(µ0/4π )(γHγNhÃ/2r 3
N H ), c = γN B01σ/3, and1σ

is the chemical shift anisotropy of the15N nucleus. Equation [1
can be simplified using the reduced spectral density appro
(23, 24)

R1 = 7d2J(0.921ωH )+ 3(c2+ d2)J(ωN) [2a]

R2 = 13d2

2
J(0.955ωH )+ (c2+ d2)

[
2J(0)+ 3

2
J(ωN)

]
[2b]

NOE= 1+
5d2

(
γH

γN

)
J(0.87ωH )

R1
. [2c]

It is evident from Eq. [2c] that the steady-state NOE is dep

dent on the high-frequency components of the spectral den
function as well asR1 (which is available from relaxation mea
surements). The assumption thatJ(ω) ∝ ω−2 atω ≈ ωH allows
ATIONAL DIFFUSION TENSOR 205
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the contribution of the high-frequency components to be e
mated for Eqs. [2a] and [2b] using Eq. [2c]. Subtracting th
contributions, we obtain (25, 26)

R′1 = R1− 7

(
0.921

0.87

)2

HF = 3(c2+ d2)J(ωN) [3a]

R′2 = R2− 13

2

(
0.955

0.87

)2

HF = (c2+ d2)

[
2J(0)+ 3

2
J(ωN)

]
,

[3b]

whereHF= d2J(0.87ωH ) = −(γN/5γH )(1− NOE)R1. Using
Eqs. [3a] and [3b], we define a quantityρ which depends solely
on the ratio of the spectral densities at frequencies zero andωN .
This quantity, which is independent of local motion, structu
parameters such as NH bond length, and CSA values (to
order), is given by (when the effects of exchange onR2 are
absent)

ρ = 4

3

(
R′1

2R′2− R′1

)
= J(ωN)

J(0)
. [4]

In this paper, we will relate all derived quantities toρ, so all
effects of local motion will be neglected in what follows.

In the most general case of a rigid asymmetric top (no lo
motion), the spectral density function at a frequencyω is given
by (18)

J(ω) = 2

5

5∑
i=1

Ai Di

D2
i + ω2

, [5]

where

D1 = (4Dxx + Dyy+ Dzz)

D2 = (Dxx + 4Dyy+ Dzz)

D3 = (Dxx + Dyy+ 4Dzz) [6]

D4 = 6Diso+ 6
√(

D2
iso− D2

)
D5 = 6Diso− 6

√(
D2

iso− D2
)

with Diso = (Dxx + Dyy + Dzz)/3 and D2 = (DxxDyy +
DyyDzz + DxxDzz)/3. Dxx, Dyy, and Dzz are the principal
components of the molecular rotational diffusion ten
D (Dxx ≤ Dyy ≤ Dzz). The coefficientsAi are given by

A1 = 3y2
dz2

d

sity
-

A2 = 3x2
dz2

d

A3 = 3x2
d y2

d



c

H

n

Di
eff =

2D2

Dii + Diso
, [15]
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A4 = 1
4

[
3
(
x4

d + y4
d + z4

d

)− 1
]− 1

12

[
δx
(
3x4

d + 6y2
dz2

d − 1
)

+ δy
(
3y4

d + 6x2
dz2

d − 1
)+ δz

(
3z4

d + 6y2
dx2

d − 1
)]

A5 = 1
4

[
3
(
x4

d + y4
d + z4

d

)− 1
]+ 1

12

[
δx
(
3x4

d + 6y2
dz2

d − 1
)

+ δy
(
3y4

d + 6x2
dz2

d − 1
)+ δz

(
3z4

d + 6y2
dx2

d − 1
)]
, [7]

where δ j = (Dj j − Diso)/
√

D2
iso− D2 ( j = x, y, z), and (xd,

yd, zd) denotes coordinates of the NH unit vectors in the prin
pal axis frame of the diffusion tensor. The (xd, yd, zd) are related
to the molecular frame unit vectors by the transformation

xd
 

x


n

yd

zd

 = R(α, β, γ )y
z

 , [8]

where the transformation matrixR(α, β, γ ) is given by

R(α, β, γ ) =

 cos(α) cos(β) cos(γ )− sin(α) sin(γ ) sin(α) cos(β) cos(γ )+ cos(α) sin(γ ) −sin(β) cos(γ )

−cos(α) cos(β) sin(γ )− sin(α) cos(γ ) −sin(α) cos(β) sin(γ )+ cos(α) cos(γ ) sin(β) sin(γ )

cos(α) sin(β) sin(α) sin(β) cos(β)

 , [9]

whereα, β, andγ are the Euler angles relating the principal axiswhereD2 andDiso have been defined above. For example, whe

a

d

frame of the diffusion tensor to the molecular frame. In the c
of an axially symmetric diffusion tensor (symmetric top), w
haveDzz = D‖ andDxx = Dyy = D⊥ and Eq. [5] transforms
to

J(ω) = 2

5

3∑
i=1

Aax
i Dax

i(
Dax

i

)2+ ω2
[10]

with

Dax
1 = (5D⊥ + D‖)

Dax
2 = (2D⊥ + 4D‖) [11]

Dax
3 = 6D⊥.

The coefficientsAax
i are given by

Aax
1 = 3z2

d

(
1− z2

d

)
Aax

2 =
3

4

(
1− z2

d

)2
[12]

Aax
3 =

1

4

(
3z2

d − 1
)2
.

Effective Diffusion Constant

A simpler, alternative approach is to define an effective
fusion constant for a given NH vector in the following way:
Deff = ωN

6

√
ρ

1− ρ . [13]
, AND COWBURN

i-

Deff is an apparent isotropic diffusion constant for a given N
vector, and is given byDeff = 1/15J(0). Using Eq. [5],Deff can
be expressed as

Deff = 1

6
∑5

i=1 Ai /Di

. [14]

Deff takes the following form when the NH vector in questio
points along thei th (i = x, y, z) principal axis of the diffusion
tensor,
se
e

if-

the NH vector points along thex axis of the diffusion tensor,
Eq. [15] transforms to

Dx
eff =

2(DxxDyy+ DxxDzz+ DyyDzz)

4Dxx + Dyy+ Dzz
. [16]

When the anisotropy in the diffusion tensor is small, we may
express the principal elements in the following way,

Dxx = D

Dyy = D(1+ ε1) [17]

Dzz= D(1+ ε2),

whereε1 and ε2 are small, positive dimensionless quantities,
with ε1 < ε2. Using Eq. [17] in Eq. [16] we have

Dx
eff = 2D

[
3+ 2(ε1+ ε2)+ ε1ε2

6+ (ε1+ ε2)

]
. [18]

For small anisotropy, we haveε1+ ε2¿ 6 andε1ε2 ≈ 0. Thus,
Eq. [18] transforms to

Dx
eff = D

(
1+ ε1+ ε2

2

)
= Dyy+ Dzz

2

[19]

= 3Diso− Dxx

2
.
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The effective diffusion constant along a given axis is then
average of the principal values along the two orthogonal a
and we have

Di
eff =

3Diso− Dii

2
, [20]

wherei = x, y, z. Thus, theDi
eff can be considered to be th

components of a second-rank tensorQ represented by (2, 3)

Q = 3DisoE− D
2

, [21]

whereE is the identity tensor.
For a given NH vector, the effective diffusion constant can

expressed as (27)

Deff = Diso+ 2

3

∑
i j

Qi j Si j [22]

with Si j = (3i j −δi j )/2 (i, j = x, y, z) andδi j is the Kronecker
delta symbol. This result is obtained from the fact that a seco
rank tensor can be decomposed into a scalar (rank 0) compo
a pseudo-vector component (rank 1), and a symmetric tens
rank 2. The scalarDeff can then be obtained taking a sca
product ofQ andS. The components ofScomprise of the coor-
dinates of the NH unit vector in the molecular frame. The fi
term on the right-hand side of Eq. [22] comes from the ran
(isotropic) component and the second term comes from the
traction of the rank 2 component. The rank 1 component is z
sinceD (and thereforeQ) is a symmetric tensor (28). Simplifying
Eq. [22], we obtain (2, 3)

Deff = Qxxx2+ Qyyy2+ Qzzz
2+ 2Qxzxz

+ 2Qxyxy+ 2Qyzyz. [23]

Deff has transformation properties similar to residual dipo
couplings measured for proteins in orientated systems (8–10).
Clore et al. have proposed previously that theR2/R1 ratio
(which determinesDeff, cf. Eq. [13]) displays a dipolar powde
pattern behavior for a uniformly distributed set of NH vecto
(7). Though an analytical proof is very difficult in the ge
eral case, it may be obtained quite easily in the case of s
anisotropy. Equation [23] can be rewritten in polar coordina
as

Deff = Diso+ Dyy− Dxx

4
sin2 θ cos(2ϕ)

− 2Dzz− Dxx − Dyy (3 cos2 θ − 1). [24]

12

We define three new variables,y = (Dzz + Dyy − 2Deff)/
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(Dzz− Dxx), f = (Dyy− Dxx)/(Dzz− Dxx) andz= −cos(θ ).
Using these in Eq. [24], we have

y = f sin2 ϕ + (1− f sin2 ϕ)z2 [25]

with 0≤ y ≤ 1. Equation [25] has the same form as the norm
ized frequency for a dipolar lineshape as outlined in Appen
I of Slichter (29). Thus, following the same procedure as t
outlined by Slichter, one can derive an expression for the di
bution functionI (y) as a function ofy. We will reproduce only
the final expression here; for details, the reader is referre
Appendix I of Slichter:

I (y) = 4√
y(1− f )

K

[
f (1− y)

(1− f )y

]
for y > f

I (y) = 4√
f (1− y)

K

[
y(1− f )

(1− y) f

]
for y < f.

[26]

HereK is the elliptic integral of the first kind and is given by

K (m) =
∫ π

2

0

dx√
1−msin2 x

. [27]

There is a discontinuity aty = f in Eq. [26], which correspond
to the NH vector pointing along they axis of the diffusion tensor
At this point the effective diffusion constant is given byDeff =
(Dxx + Dzz)/2. This validates the suggestion of Cloreet al.
(7), who proposed that the maximum of theR2/R1 distribution
function corresponds to the NH vectors pointing along they axis
of the diffusion tensor.

Singular Value Decomposition Approach

In the case where we have determinedρ and henceDeff for
n different NH vectors, we may write Eq. [23] in a matrix for
as

D1
eff

D2
eff

·
·
·
·

Dn
eff


=



x2
1 y2

1 z2
1 2x1y1 2y1z1 2x1z1

x2
2 y2

2 z2
2 2x2y2 2y2z2 2x2z2

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

x2
n y2

n z2
2 2xnyn 2ynzn 2xnzn





Qxx

Qyy

Qzz

Qxy

Qyz

Qxz


.

[28]

Equation [28] can be written in symbolic form as
EDeff = A EQ, [29]
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where EDeff is ann-dimensional column vector,A is ann-by-6
matrix, andEQ is a six-dimensional column vector composed
the elements of theQ tensor in Eq. [21]. The elements ofEQ and
hence those ofD can be obtained by inversion of Eq. [29]. Th
pseudo-inverse ofA can be written in the following way (30),

A−1 = V · diag

(
1

sj

)
· UT , [30]

whereU is ann-by-6 column-orthogonal matrix,V is a 6-by-6
orthogonal matrix, andsj are the singular values ofA. In the case
where the matrixA contains redundant data, which may occ
when two or more vectors are nearly parallel, it is singular. T
singular values,sj , corresponding to those rows are zero, lead
to instabilities in Eq. [30]. This instability is characterized b
the so-called condition number of the matrix (30), which is the
absolute ratio of the largest to the smallest singular value
the matrix. The condition number of a matrix is infinity whe
a singular value is 0. This problem is solved by setting 1/sj to
zero for the problematic rows. This corresponds to remova
the corresponding rows from theA matrix, which is justified
since this amounts to removal of redundant data. In the pre
case this operation is performed until the condition numbe
the matrix is less than 5. Using Eq. [30] in Eq. [29], we obtain t
elements ofEQ and we can reconstruct theQ matrix and hence
theD matrix (see Eq. [21]) which is then diagonalized to yie
the eigenvalues of the diffusion tensor and the orientation of
principal axes with respect to the molecular frame.

However, as was mentioned previously, Eq. [23] is not
plicable in the general case and holds only for systems wi
small degree of anisotropy. Application of Eq. [23] to syste
with substantial anisotropy may lead to errors in determinat
of the diffusion tensor (see below). The anisotropy of the dif
sion tensor is characterized by two parameters—the first, w
characterizes the anisotropy, is given by

ζ = 2Dzz

Dxx + Dyy
. [31a]

The second, which characterizes the rhombicity, is given by

η = 3

2

(−1)n(Dyy− Dj j )

Dzz

ζ

ζ − 1
, [31b]

wherej = zandn= 1 for an oblate ellipsoid (Dzz≥ Dyy> Dxx);
j = x andn= 2 for a prolate ellipsoid (Dzz> Dyy≥ Dxx); η= 0
for an axially symmetric diffusion tensor; whileζ = 1, η = 0 for
an isotropic diffusion tensor. In order to characterize the err

in the tensor determination from the approximate method,
define two more parameters. The error in the principal elem
, AND COWBURN
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determination may be characterized by

εd = 100

√√√√ ∑
i=x,y,z

1

3

[(
Dact

ii − Dcalc
ii

)
Dact

ii

]2

. [32]

The error is 0 when there is perfect match between the actual
calculated values. We can formulate a similar definition for t
error in the orientation of the diffusion tensor. This is given b

εa = 100

[
1− Trace|Ract(α, β, γ )Rcalc(α, β, γ )T |

3

]
. [33]

The absolute values of the rotation matrices are used
Eq. [30] because inspection of Eqs. [7] and [12] reveals that
coordinates occur as even powers and hence the ratio in Eq
is invariant to an even number of successive reflections abou
x–y, x–zor y–zplanes (31). The solution space of Euler angles
then fourfold degenerate for a right-handed coordinate syst
i.e., (α, β, γ ), (α, β,180+ γ ), (180+ α, 180− β, 180− γ ),
and (180+ α, 180− β, 360− γ ) are all valid solutions.εa is
0 when the actual and calculated orientations are the same
100 when the two orientations are orthogonal to each ot
Figures 1a and 1b show theεd andεa as functions ofζ andη
calculated from simulated relaxation data (R1, R2, and NOE)
for a set of 50 uniformly distributed vectors with aDzz value of
4.0 × 107 s−1 at 600.13 MHz. The Euler angles relating th
diffusion tensor frame to the molecular frame are given
α = β = γ = 45◦. The angular errors remain very small (muc
smaller than 1%) even for highly anisotropic systems wh
the error in the principal components becomes large for hig
anisotropic diffusion tensors. Thus the approximate approac
accurate in determining the orientation of the diffusion tens
even for highly anisotropic systems. Also shown in Fig. 1c
εDxx , which is the percentage error inDxx (the largest in this
case). Figure 1d shows the RMS error (εiso) in the isotropic
value of the diffusion tensor as a percentage of its actual va
As is evident, the error in isotropic value is smaller thanεd due
to the self-compensatory nature of the errors in the individ
values of the principal elements of the diffusion tensor.

To summarize, the approximate approach solves Eq. [28]
the elementsQi j of the Q tensor, followed by the reconstruc
tion of theQ tensor and its diagonalization to obtain the pri
cipal elements and orientation. The principal elements of
D tensor can be obtained from the principal elements of theQ
tensor using Eq. [21]. We observed that the Euler angles
tained using the approximate approach are more accurate
the principal values of the tensor. We believe that the accur
of the approximate approach in predicting the orientation of
Q tensor (and therefore theD tensor) lies in the second ste
of the procedure, i.e., reconstruction and diagonalization of
Q tensor. To illustrate this, let us adopt a perturbation the

we
ent
approach. When the anisotropy is small, both the principal val-
ues and the orientation of theQ tensor are predicted accurately.
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FIG. 1. Plots of the errors in the principal values of the diffusion tensorεd (a) and those in the orientationεa (b), estimated using the SVD approach, a

function of the anisotropy (ζ ) and rhombicity (η) of the diffusion tensor. The errors have been calculated from simulated relaxation data (R1, R2, and NOE) for
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a set of 50 uniformly distributed vectors with aDzz value of 4.0× 107 s−1 at 60
frame are given byα = β = γ = 45◦. Also shown are the error in theDxx princ

As the anisotropy increases, the error in prediction of the cor
tensor, we callQ0, by the approximate method that yields tens
Q increases. In this case,Q may be treated as a perturbation
the result obtained from the exact analysis (Q0). Let the correct
tensor be characterized by the eigenvaluesQ0

i i and eigenvectors
(which represent its orientation)λ0

i . Thus,Q = Q0+Q′ and the
first-order correction to the eigenvalues is given byQ1

i i = Q′i i
which are the diagonal elements of the perturbationQ′. The
absolute values ofQ1

i i show a monotonic increase as the ma
nitude of the anisotropy (and the norm ofQ′) increases since
Q shows larger and larger deviations fromQ0. This correction
to the eigenvalues can be considered to represent the erro
predicting the correct eigenvalues by the approximate met
The eigenfunctions ofQ can be written as a linear combinatio
of the eigenfunctions ofQ0 as

λi = λ0
i +

∞∑
n=1

∑
j 6=i

an
i j λ

0
j . [34]
The first-order correction, represented by the coefficienta1
i j , is
0.13 MHz. The Euler angles relating the diffusion tensor frame to the molec
ipal component (c) and the isotropic diffusion constant (1/3)Tr(D) (d).

rect
or
n

g-

rs in
od.
n

given by

a1
i j =

Q′i j
Q0

j j − Q0
i i

. [35]

As the anisotropy increases, the increase in the numerat
mirrored by the increase in the denominator (as the anisotr
increases, the differences between the eigenvalues of the
sorQ0 become more pronounced). Thus theλi i do not show a
large deviation from theλ0

i i ; i.e., the orientation predicted b
the approximate analysis does not deviate much from the ac
orientation. This proof is not rigorous, as the perturbation the
approach does not hold when the anisotropy is very large;
the magnitude ofQ′ becomes comparable to that ofQ0.

Thus, the singular value decomposition approach can be
to restrict the angular space spanning the anglesα, β, andγ in a
subsequent, more accurate search for the diffusion tensor u

the exact equations represented by Eqs. [4]–[9] (or Eqs. [8]–
[12] in the axially symmetric case), thus greatly reducing com-
putational time as opposed to a grid search over the entire
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three-dimensional space of Euler angles without compromi
the generality of the approach.

Quality Factor for the Diffusion Tensor

In order to estimate the quality of the diffusion tensor cal
lated from experimental data, it is necessary to provide a mea
of how well the relaxation data calculated using the estima
diffusion tensor agree with the experimental data. The ef
tive diffusion constantDeff shown in Eq. [23] can be used a
a measure of the quality of the estimated diffusion tensor.
lowing the definition used by Clore and Garrett (32) for the
quality factor for residual dipolar couplings (the similarity b
tweenDeff and dipolar couplings has been demonstrated ab
when the anisotropy is not large), we define a quality fac
R by

R=
√√√√ 〈(

Dobs
eff − Dcalc

eff

)2〉
2
〈(

Dobs
eff −

〈
Dobs

eff

〉)2〉 , [36]

where the brackets imply an average over all the available
vectors. A quality factor defined in this form is expected to
more stable to the completeness of the data set than thχ2

value obtained from a nonlinear least-squares fit. In the c
of an infinitely large set of uniformly distributed NH vector
〈(Dobs

eff )2〉 = 〈(Dcalc
eff )2〉 and〈Dobs

eff 〉 = 〈Dcalc
eff 〉, makingR= 1. In

this case, the standard deviation of the distribution is expre
analytically (for small anisotropy) as〈(

Dobs
eff −

〈
Dobs

eff

〉)2〉

[ 2 2]

ious

a

using Eq. [9]. The distribution of the Euler anglesα, β, andγ
for
or
= 1

15

(2Dzz− Dxx − Dyy)

12
+ (Dyy− Dxx)

4
. [37]

TABLE 1
Comparison of the Input (i) and Calculated (c) Values Using the Described SVD Approach on Simulated Relaxation Data for a Set of

50 Uniformly Distributed NH Vectorsa

Type τc(i) Dxx(i) Dxxa(c) Dyy(i) Dyya(c) Dzz(i) Dzza(c) α(i) α(c) β(i) β(c) γ (i) γ (c)

1. Full 16.67 0.80 0.81± 0.01 1.00 0.99± 0.01 1.20 1.19± 0.01 45 43.1± 2.0 45 46.8± 1.5 45 43.5± 2.2
2. Axial 16.67 0.90 0.89± 0.01 0.90 0.92± 0.01 1.20 1.19± 0.01 45 47.8± 1.8 45 45.7± 1.4 45 Ub

3. Iso 16.67 1.0 0.98± 0.01 1.0 1.00± 0.01 1.0 1.02± 0.01 45 Ub 45 Ub 45 Ub

4. Full 8.33 1.0 0.91± 0.02 2.0 2.04± 0.02 3.0 2.90± 0.02 25 24.4± 1.1 45 44.7± 1.2 60 60.6± 1.0
5. Axial 8.33 1.5 1.46± 0.02 1.5 1.52± 0.02 3.0 2.91± 0.02 25 27.5± 1.0 45 45.8± 0.7 60 Ub

6. Iso 8.33 2.0 1.96± 0.02 2.0 2.00± 0.01 2.0 2.05± 0.02 25 Ub 45 Ub 60 Ub

a The τc(i) values are in ns, and are 1/(2Tr[D(i)]). The τc(c) (not shown) can be calculated from the elements ofD(c). The values of the diffusion tensor
elements are in units of 107 s−1. The values of the Euler angles (α, β, γ ) are in degrees. The (i) and (c) refer to the input and extracted values for the var
elements. The errors in the extracted values have been calculated using 5000 Monte Carlo steps using the noise in the relaxation data (1% forR1, 2% for R2, and
5% for NOE).

b For the axially symmetric diffusion tensor, thex andy axes of the diffusion tensor and hence the angleγ are arbitrary. Thus, since the SVD approach fits

corresponding to the orientation of the diffusion tensor axes
Fig. 2a is shown in Fig. 2d. The values of the diffusion tens
fully anisotropic model to the data, all values ofγ in the 0◦–360◦ range are obt
the calculated values. In the case of the isotropic diffusion tensor, the relax
all three axes of the diffusion tensor and hence the anglesα, β, andγ are arbitr
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For the case of an infinite set of uniformly distributed NH ve
tors, R assumes an indeterminate form (0/0) for an isotropic
diffusion tensor as is evident from Eq. [36] and Eq. [37].
this limit, the quality factor introduced here is invalid, as is t
quality factor for residual dipolar couplings introduced by Clo
and Garrett (32). A similar quality factor for relaxation data ha
been suggested recently by de Albaet al. (33).

APPLICATIONS

Computer Simulation

Table 1 shows the results of the application of the appro
mate method to two different random distributions of 50 vect
for a fully anisotropic, an axially symmetric, and an isotrop
diffusion tensor. Relaxation data were generated for these d
butions using different sets of principal values and orientati
of the diffusion tensors. The random errors were 1, 2, and
in the R1, R2, and NOE measurements, respectively. The er
in the values of the principal elements of the diffusion tenso
well as the tensor orientations were obtained from 5000 Mo
Carlo simulations using the random error in the relaxation d
In the case of the fully anisotropic diffusion tensor, the orien
tion of the principal axis frame in the molecular frame is sho
in Fig. 2a. In this case, all three Euler anglesα, β, andγ are
well defined. In the case of the axially symmetric diffusion te
sor (Fig. 2b), the angleγ is arbitrary since there is only on
unique axis, thez axis, while thex andy axes have no uniqu
orientation. There is no unique orientation for any of the axes
an isotropic diffusion tensor as is shown in Fig. 2c. In the c
where the approximate analysis yields uniquely definedx, y,
andz directions for the diffusion tensor, the mean and stand
deviation ofα, β andγ are determined from the distributio
ained as solutions. This is indicated by the letter U, signifying a uniform spread in
ation rates are completely independent of the orientation of the NH vector and, hence,

ary.
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FIG. 2. Distribution of eigenvectors for a fully anisotropic (a), axially symmetric (b), and isotropic (c) diffusion tensor. In the case of the fully anisoopic

diffusion tensor, all three axes are well defined. In the axially symmetric case, only thez axis is unique, while thex andy axes of the diffusion tensor are arbitrary.
In the isotropic case, all three axes are arbitrary. Also shown (d) is the distribution of Euler angles corresponding to the distribution of (a), whichis the fully
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anisotropic case. It is evident that all three Euler anglesα, β, andγ are well defi

obtained by this analysis (Dxxa, Dyya, Dzza) are then used as star
ing values in a simplex search over a three-dimensional gri
the Euler anglesα, β, andγ (1◦ steps) using the exact equa
tions given by Eqs. [4]–[9]. The angular space is constraine
lie between [αav ± K11α, βav ± K21β, γav ± K31γ ], where
Xav and1X (X = α, β, γ ) are the average values and standa
deviations of the Euler angles obtained from the approxim
analysis.

TheKi (i = 1, 2, 3) are determined in the following way—w
start with initialKi values of 2.0 and perform the calculation.
the boundary of the restricted space of an Euler angle is hit on
successive steps of a calculation, theKi value corresponding to
that particular Euler angle is increased by 0.5, thus widening
search space for that Euler angle. In all the cases we investig
we used rather conservative finalKi values that varied from 2.0
to 5.0.

In the case where only thez axis is uniquely defined (this is

assumed to be the case when the standard deviation of the a
γ > 35◦), the fit to the fully anisotropic diffusion tensor usin
the exact approach is not performed but fits to the axially sy
ed and there are four degenerate solutions (in a right-handed coordinate s

-
of

-
to

rd
ate

e
If
two

the
ted,

metric tensor are performed using Eqs. [8]–[12] constraining
angular space to lie between [αav±K11α, βav±K21β, γ = 0]
where the angles are determined from the last row of Eq. [9]
tingγ = 0 and using (Djja+Dkka)/2 andDiia, (i, j, k = x, y, z)
as starting values for the search (whereDiia is the unique value
obtained from the approximate analysis). In the case where
approximate analysis indicates an isotropic tensor (when
standard deviation of the values of all three anglesα, β, and
γ > 35◦) fits are performed to both the axially symmetric a
the isotropic models with the search extending over the en
space ofα and β angles in the case of the former fit usin
[(Dxxa+ Dyya)/2, Dzza] as starting values. The above procedu
is implemented in a MATLAB (34) package DIFFTENS show
schematically in Fig. 3.

It should be restated here that in the case when an axially s
metric model is fit to a diffusion tensor which is fully anisotrop
one obtains two minima which are similar in theirχ2 values—

ngle

g
m-

one corresponding to an oblate tensor and the other to a prolate
tensor (5). We can, however, estimate whether the tensor is in-
deed closer to an oblate or prolate model by investigating the
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FIG. 3. Schematic representation of the MATLAB program DIFFTEN
used to estimate the diffusion tensor. In the case of the fit to the axially symm
model the starting values for the axially symmetric fit are chosen asDiia , (Djja+
Dkka)/2 (i, j, k = x, y, z), whereDiia is the unique value andDjja andDkka are
closest in value to each other as obtained from the SVD analysis.

principal values obtained from the approximate analysis. The
proximate approach considers the fully anisotropic tensor an

thus free from the two-minima problem. Thus, in our subsequent

elements

the diffusion tensor andα = 48.0 ± 14.0 , β = 39 ± 9.0 ,
s
od
fit to the axially symmetric model, only the relevant minimum
is investigated.

TABLE 2a
Results for Simulated Tensor 1—Final Resultsa

Model Dxx Dyy Dzz α β γ τc χ2 F P (%) Rb

Full 0.81± 0.02 0.98± 0.02 1.19± 0.02 43 47 43 16.72 42.38 — — 0.16
Axial 0.90± 0.01 0.90± 0.01 1.19± 0.02 49 47 — 16.77 153.16 57.49 5.32e−11 0.31
Iso 0.97± 0.01 0.97± 0.01 0.97± 0.01 — — — 17.15 776.49 62.41 3.02e−14 0.71

a The exact calculation was performed for the simulated tensor 1, shown in the first row of Table 1 using the above starting values for the tensor

andγ = 85◦ ±37.0◦ for the Euler angles. The confidence limit
for the principal elements were determined using the meth
and using the results of the SVD analysis to restrict the space of Euler
43± 7◦.

b R has been calculated from Eq. [36].
, AND COWBURN
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The results of the application of the exact approach with
angular space restricted by the results of the SVD approach
shown in Tables 2a and 2b for the fully anisotropic diffusi
tensors from Table 1 (Type 1 and 4). For very highly anisotro
systems, the values of the diffusion tensor elements themse
are not accurate, as noted above. In these cases, it mig
necessary to use a few different, close values for the in
guesses for the diffusion tensor elements input into the sim
search, so as to avoid obtaining a false minimum. This co
be done, for example, by multiplying the values of the ten
elements obtained by the SVD approach by different sca
factors. However, the angular restriction still holds, because
orientation of the diffusion tensor obtained by the SVD approa
is still very accurate, as demonstrated above, and herein lie
real power of this hybrid approach.

Application to Real Systems

Application I—Test case: Ubiquitin.Tables 3a and 3b dis
play the results of the above analysis applied to15N-labeled
ubiqutin. The orientations of the NH vectors from the crys
structure (1ubq· pdb) were used.R1, R2, and NOE data were
those provided by Tjandraet al. (1). Residues which exhibited
significant exchange effects or rapid motion on the fast times
(NOE< 0.7) were excluded from the analysis. In all, 55 residu
were included in the analysis (these were the same as thos
lized by Tjandraet al. (1)). It is interesting to note that the
approximate analysis indicated a fully anisotropic tensor w
the principal elements given byDxxa= 3.76± 0.02× 107 s−1,
Dyya = 3.88± 0.02× 107 s−1, and Dzza = 4.46± 0.02×
107 s−1 (ζ = 0.17 andη = 0.28), with the Euler angles re
lating the diffusion tensor frame to the molecular frame giv
by α = 48.9± 2.7◦, β = 38.7± 1.6◦, andγ = 79.1± 6.9◦.
The errors were determined from 2000 Monte Carlo simulati
utilizing the experimental error in the relaxation rates. The
act analysis using the values ofDxxa, Dyya, andDzza as starting
values and constraining the Euler anglesα, β, andγ to lie in
the range 49± 6◦, 39± 5◦, and 79± 14◦ yielded values of
Dxx = 3.76± 0.17× 107 s−1, Dyy = 3.88± 0.17× 107 s−1,
andDzz= 4.46± 0.14× 107 s−1 for the principal elements o

◦ ◦ ◦ ◦
angles. The restricted angular space wasα = 43± 6◦, β = 47± 5◦, and γ =



tensor el-
DETERMINATION OF THE ROTATIONAL DIFFUSION TENSOR 213

TABLE 2b
Results for Simulated Tensor 4—Final Resultsa

Model Dxx Dyy Dzz α β γ τc χ2 F P (%) Rb

Full 0.99± 0.05 2.01± 0.05 3.05± 0.06 24 46 61 8.27 70.87 — — 0.09
Axial 1.46± 0.08 1.46± 0.08 2.85± 0.16 20 46 — 8.66 1188.67 347.01 1.14e−25 0.43
Iso 1.82± 0.03 1.82± 0.03 1.82± 0.03 — — — 9.17 3664.06 31.99 2.60e−9 0.75

a The exact calculation was performed for the simulated tensor 4 shown in the fourth row of Table 1 using the above starting values for the

ements and using the results of the SVD analysis to restrict the space of Euler angles. The restricted angular space wasα= 24± 5◦, β = 46± 5◦, and
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γ = 61± 5◦.
b R has been calculated from Eq. [36].

of constantχ2 boundaries (30) (the 68.3% confidence limits
are reported). The confidence limits of the estimated Euler
gles were obtained from the widths of the contour maps of
target function from the covariance matrix calculated by util
ing the principal elements of the diffusion tensor obtained
theχ2 minimum. Examples of portions of theα–β projection
and theα–γ projection near the minimum of the 3D contou
map are depicted in Figs. 4a and 4b. The value ofχ2 at the
minimum was found to be 656.11. Performing the fit to the a
ially symmetric model yielded values ofD⊥ = 3.82± 0.06×
107 s−1 andD‖ = 4.43± 0.11×107 s−1 (ζ = 1.16) for the prin-
cipal elements of the diffusion tensor andα = 48.0◦±15.0◦ and
β = 39◦ ±9.0◦ for the Euler angles (Fig. 4c depicts a portion
the contour map of the target function at theχ2 minimum) and
there was a marginal increase in the value ofχ2 to 680.85. A
statistical analysis of the significance of the results using thF
test (30) yielded anF value of 0.93 and indicated that there w
a 59.9% probability that the marginal change in theχ2 by going
from the axially symmetric to the fully asymmetric model w
obtained by chance. However, the decrease in theχ2 value in go-
ing from the isotropic to the axially symmetric model was fou
to be statistically significant (see Table 3b). This is in compl
agreement with previously obtained results (1, 3). The entire cal-
culation (excluding the detailed analysis of the errors in the Eu
angles) required approximately 1 h on aPentium III computer
operating at 733 MHz. The slowest step in the calculation w
as expected, the grid search over the restricted subspace of
angles for the fully anisotropic and axially symmetric model

Application II—SH(32) dual-domain construct of Abels
kinase complexed with a consolidated ligand.In the dual-
domain construct of the SH2 and SH3 domains of Abels
kinase complexed with a consolidated ligand, the relative
entation of the two domains can be obtained by determina
of the diffusion tensor individually for each of the two domai
separately and then by aligning the two tensor axes (6). This
approach is valid only for systems in which the two doma
are relatively rigid with respect to each other, so that the
ative mobility of the individual domains is limited. In an ea
lier publication, the change in relative orientation of the tw

domains on binding to a consolidated ligand was investiga
assuming an axially symmetric diffusion tensor (6). An axi-
an-
the
z-
at

r

x-

f

s

s

d
te

ler

as,
uler
.

n

on
ri-
ion
s

ns
el-
r-
o

ally symmetric diffusion tensor, though a valid approximati
in the unligated form, is not expected to hold in the ligated ca
Here, we apply the fully anisotropic model to the ligated fo
of the SH(32) dual-domain system of Abelson kinase. As
shown by the results of Tables 4a–4d a fully asymmetric dif
sion tensor is indicated for both domains (aP value of less than
5% is considered to be statistically significant). The rhomb
ity in the tensor is quite large withζ = 1.14 andη = 0.68
for the SH2 domain while the corresponding values for
SH3 domain are 1.29 and 0.95, respectively. The magnit
of the rhombicity can be attributed to the presence of the c
solidated ligand on one face of the dual-domain construct.
principal components of the diffusion tensor as determined fr
the individual domains seem to differ slightly, being margina
larger in the SH3 domain. This indicates a small amount of
ative motion between the two domains. This motion could
caused by some residual mobility of the two domains in
ligated state, as well as the on/off processes associated
the consolidated ligand binding at one or both sites. We
lized the orientation of the NH bond vectors for the individu
domains in the Abl-SH(32) crystal structure (2abl· pdb). Struc-
tural studies on other SH2 domains indicate that ligand bind
has no significant effect on the protein core (35, 36). A crystal
structure is available for the Abl-SH3 domain complexed w
ligand (1abo· pdb). The NH vector orientations obtained fro
this (1abo· pdb) structure produced no significant changes
the results for the SH3 domain. In both cases, only the c
residues were used to calculate the diffusion tensor. In the
of the SH2 subdomain of the core residues, the residues
178 exhibit conformational exchange and were excluded fr
the relaxation analysis. Further, the residues 153, 174, 176,
191, 193, and 204 showed large errors inR1 and R2 values
(>10%) and were excluded (49 residues used). Table 4b sh
the results of the analysis. In order to assess the quality o
estimated diffusion tensor,R values (from Eq. [36]) were esti
mated for the fully anisotropic, axially symmetric, and isotrop
diffusion tensors. These values were found to be 0.61, 0.63,
0.70 for the three models. TheR values obtained on inclusion
of the residues excluded from the tensor estimation due to l
errors were 0.64, 0.66, and 0.70. Though, in this case, the va
tedof the R factors were marginally higher, the fully anisotropic
model produced a lowerR factor than the two other cases. In
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TABLE 3a
Results for Ubiquitin at 600 MHz—SVD Analysis

Dxxa Dyya Dzza α β γ

Results from SVD 3.76± 0.02 3.88± 0.02 4.46± 0.02 48.9± 2.7 38.7± 1.6 79.2± 6.8
Input into simplex 3.76 3.88 4.46 43–55 34–44 65–93

TABLE 3b
Results for Ubiquitin at 600 MHz—Final Results

Model Dxx Dyy Dzz αa β γ τc χ2 F P (%) R

Full 3.76± 0.17 3.88± 0.17 4.46± 0.14 48± 14 39± 9 85± 37 4.13 655.91 — — 0.55
Axial 3.82± 0.06 3.82± 0.06 4.43± 0.11 48± 15 39± 9 — 4.14 680.86 0.93 59.93 0.55
Iso 4.06± 0.16 4.06± 0.16 4.06± 0.16 — — — 4.10 1139.90 11.46 7.4e−03 0.71

a The definitions of the Euler angles used here are different from but consistent with those of Tjandraet al. (1).

TABLE 4a
Results for SH2 Domain for SH(32)/Ligand at 600 MHz—SVD Analysis

Dxxa Dyya Dzza α β γ

Results from SVD 1.36± 0.02 1.54± 0.02 1.66± 0.02 168.2± 4.2 81.5± 10.1 99.4± 8.3
Input into simplex 1.36 1.54 1.66 153–183 52–112 74–12

TABLE 4b
Results for SH2 Domain for SH(32)/Ligand at 600 MHz—Final Results

Model Dxx Dyy Dzz α β γ τc χ2 F P (%) R

Full 1.34± 0.08 1.56± 0.08 1.65± 0.09 156± 16 61± 30 115± 12 10.96 58.33 — — 0.61
Axial 1.45± 0.04 1.45± 0.04 1.66± 0.08 168± 33 91± 41 — 10.91 75.94 6.49 0.34 0.63
Iso 1.54± 0.01 1.54± 0.01 1.54± 0.01 — — — 10.85 90.63 2.90 4.52 0.7

TABLE 4c
Results for SH3 Domain for SH(32)/Ligand at 600 MHz—SVD Analysis

Dxxa Dyya Dzza α β γ

Results from SVD 1.28± 0.02 1.65± 0.02 1.89± 0.02 187.5±6.4 50.0± 1.5 178.6± 11.0
Input into simplex 1.28 1.65 1.89 168–208 40–60 148–208

TABLE 4d
Results for SH3 Domain for SH(32)/Ligand at 600 MHz—Final Results

Model Dxx Dyy Dzz α β γ τc χ2 F P (%) R

Full 1.31± 0.17 1.62± 0.18 1.89± 0.12 197± 27 47± 7 166± 26 10.36 25.86 — — 0.47

Axial 1.46± 0.07 1.46± 0.07 1.88± 0.13 203± 24 54± 11 — 10.44 36.27 3.83 4.02 0.58
Iso 1.60± 0.02 1.60± 0.02 1.60± 0.02 — — — 10.44 57.07 4.01 2.10 0.70



FIG. 4. Representation of a portion of the 3D contour map of the target function for a fully anisotropic diffusion tensor for ubiquitin at theχ2 minimum. The

α–β (a) andα–γ (b) projections are shown. Also shown is a portion of the corresponding 2D contour map (α–β) for the fit to the axially symmetric diffusion tensor
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(c). Only the region in the vicinity of one of the minima is depicted. There
symmetry-related minima in the case of the axially symmetric tensor. The 6

the case of the SH3 subdomain, residues 87, 89, and 99
excluded from the analysis due to conformational exchange
residues 66, 93, and 99, due to the large error inR1 and R2

values (25 residues used). TheR factors obtained for the thre
models were 0.47, 0.58, and 0.70. Inclusion of residues 66
and 99 yieldedR values of 0.53, 0.58, and 0.70, respective
Note that the above-mentioned residues with large experim
tal errors were included in the previous analysis of the SH(
data (6). The quality factor analysis then justifies their exclusi
in the present analysis, which yields results which are larg
consistent with those obtained in earlier studies (see below)6).
The total computation time required was about 21

2 h for the SH2
and 31

2 h for the SH3 domain.
The relative orientation between the two domains can be

tained, for example, by transforming both domains into the fra
of reference of the diffusion tensor. This can be represen
mathematically by
rd = RSH2rSH2 = RSH3rSH3, [38]

whererd, rSH2, andrSH3 are the coordinates of an arbitrary vecto

21
re four symmetry-related minima in the case of the fully anisotropic tensorand two
.3% confidence limits for the Euler angles have been obtained from these cotour maps.
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in the principal axis frame of the diffusion tensor, the pdb fram
of SH2, and the pdb frame of SH3, respectively.RSH2 andRSH3

are the transformation matrices which transform the individ
pdb frames of SH2 and SH3 into the principal axis frame of
diffusion tensor. Thus, the Euler angles that transform the
frame of SH3 into the pdb frame of SH2 can be obtained fr
RT = R−1

SH2RSH3. There are four valid solutions for the relativ
orientation of the two domains (in a right-handed coordin
frame) (37). However, some of this degeneracy may be resolv
using chemical-bonding considerations such as the fact tha
N-terminal part of the SH2 domain is linked to the C-termin
part of the SH3 domain. Further, the presence of the consolid
ligand makes certain conformations impossible. In the pres
case, of the four allowed solutions, only one puts the N-termi
of the SH2 domain close to the C-terminus of the SH3 dom
(5.8 Å), allowing chemical ligation to occur with minimal re
orientation of the loop region at the C-terminal end of the S
r

domain (as compared to the unligated case as derived in (6)).
In the three other cases, the corresponding distances vary from
17.4 to 24.3Å, making these impossible to achieve. Shown in

5
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FIG. 5. Two of the possible orientations of the two domains of Abl-SH3
The C-terminus of the SH3 domain and the N-terminus of the SH2 dom
which are bonded, are shown shaded orange. The incorrect solution sho
the top panel has these two termini far (17.4 A

a
) from each other whereas in th

correct solution (bottom panel) these are adjacent (5.8 A
a

).

Fig. 5 are two of the possible solutions. The top panel in Fig

shows one of the incorrect solutions in which the two releva
termini (shaded orange) are separated by 17.4Å. The correct
solution shown in the bottom panel in Fig. 5 corresponds to
, AND COWBURN

2.
ain,
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. 5

rotation byα= 316◦, β = 102◦, andγ = 251◦ of the SH3 do-
main with respect to the SH2 domain (the individual rotatio
beingα= 156◦, β = 61◦, andγ = 115◦ for the SH2 domain and
α= 17◦, β = 133◦, andγ = 194◦ for the SH3 domain). The rel
ative “bend” between the two domains structure is quite simi
within experimental uncertainity, to that obtained previously
Fushmanet al. (6). However, in that case, the assumption
an axially symmetric diffusion tensor required the interdom
“twist” to be chosen empirically, allowing optimal binding o
the consolidated ligand. The orientation of the two domains
tained here brings the binding sites on the two domains in
proper position to accommodate the consolidated ligand.

The moderately large errors in the determination of the Eu
angles relating the molecular frame to the principal axis fra
of the diffusion tensor for the individual SH3 and SH2 doma
reflect on the quality of the relaxation data. This method for
determination of domain orientation is completely general a
can yield very accurate results when the quality of relaxat
data is high and the anisotropy of the system is large.

CONCLUSIONS

We have provided a simple and efficient way of obtaining
rotational diffusion tensor of proteins of known structure, fro
relaxation data, using a combination of approximate and e
methods, resulting in a significant reduction in computation ti
as opposed to a grid search over the entire three-dimens
space of Euler angles relating the molecular frame to the p
cipal axis frame of the diffusion tensor without compromisi
the generality of the approach. The approach is implemen
in a MATLAB package DIFFTENS, which can be obtained
e-mail at the following address: ghoser@mriris.rockefeller.e
The utility of this approach has been demonstrated in the de
mination of the interdomain orientation between the SH3 a
SH2 domains in a SH(32) dual-domain construct of Abels
kinase complexed with a consolidated ligand.
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